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1. Backgrounds

Neutral differential delay equation was firstly introduced by
Brayton [Brayton, R., Quat. Appl. Math. 1976, 24, 289-301.]. He
used a partial differential equation (PDE) to describe the problem
of loseless transmission and then transferred the PDE into the
following NDDE

d
2 X0 = Kt = 7)] = fx(t). x(t — 7))

Rubanik [Rubanik, V.P. Oscillations of Quasilinear Systems with
Retardation; Nauka: Moscow, 1969.] considered this type equation
in his study of vibrating masses attached to an elastic bar.

In general, an NDDE has the form

d
S X(0) = DXt = 7)) = Ax(2), x(t = 7). 1)



Taking the environmental disturbances into account, Kolmanovskii
and Nosov [Kolmanovskii, V.B.; Nosov, V.R. Nauka: Moscow,
1981.] and Mao [Mao X. Stochastic Differential Equations and
Their Applications (2nd edition); Horwood Pub.: Chichester,
2007.] discussed the neutral stochastic differential delay equations
(NSDDEs)

d(x(t) — D(x(t — 1), 1)) = Ax(t), x(t — 1), t)dt

+ g(x(t), x(t — 7), t)dB(t) (1)
Sometimes the delay might be time-dependent:
d(x(t) — D(x(t — o(t)), t)) = Ax(¢t), x(t — o(t)), t)dt 2)

+ g(x(t), x(t — (), t)dB(t)



Considering time-dependent delay has practical meaning because
many systems depend not only on the past states of their own, the
delay might not be constant. For example, in the pandemic of
COVID-19, when they are infected, many people will have the
symptoms after different period of time, and as time goes by, the
latency of the virus becomes longer and longer, then the number of
people with symptoms can only be described by a system with
time-dependent delay, so the systems with time-dependent delays
become more and more important.

However, the exact solution to the equation is usually difficult to
obtain even the existence and uniqueness holds. So numerical
simulations become more and more important to investigate the
properties of exact solutions.



Strong convergence is a major topic for the given numerical
simulation. Indeed, if it does not converge to the exaction, it will
be useless even it have some good properties.

Asymptotic stability is also an important topic. Roughly speaking,
the stability means insensitivity of the state of the system to small
changes in the initial state or the parameters of the system. So it
is interesting to investigate the sufficient conditions under which
the numerical simulation replicates the asymptotic stability of the
exact solution.



In recent years, convergence and asymptotic stability of the
numerical methods for stochastic differential delay equations
(SDDEs) have been discussed intensively by many researchers. For
example,

1.Gan et. al [S. Gan, H. Schurz, H. Zhang, Int. J. Numer. Anal.
Model. Ser. B, 8(2011) 201-213.] investigated mean-square
convergence of stochastic § method under global Lipschitz
condition,

2.[H. Zhang, S. Gan, Appl. Math. Comput., 204 (2008) 884-890.]
studied L2 convergence of one-step methods under the same
assumptions,

3. [L. Tan, C. Yuan, Bull. Math. Sci., 9(2019)1950006.]
considered convergence of theta-method for a class of SDDEs
under local Lipschitz condition,

4.Zhang et.al [W. Zhang, M. Song, M. Liu, J. Comput. Appl.
Math., 335 (2018) 114-128.] considered strong convergence of the
partially truncated Euler-Maruyama method for a class of
stochastic differential delay equations,



5. Lan and Wang [G. Lan, Q. Wang, J. Comput. Appl. Math.,
362(2019)83-98.] obtain the sufficient conditions of strong
convergence of (MTEM) method for NSDDEs.

6. [L. Liu,Q. Zhu, J. Comput. Appl. Math. 305 (2016) 55-67.]
consider the mean-square stability of theta method,

7.[H. Mo, X. Zhao, F. Deng, Math. Methods Appl. Sci. 40 (2017)
1794-1803.] consider mean-square stability of the backward
Euler-Maruyama method,

8.[W. Wang, Y. Chen, Appl. Numer. Math. 61 (2011) 696-701.]
investigated mean-square stability of semi-implicit Euler method
for nonlinear NSDDEs.

We point out that all the above mentioned papers only consider
constant delay case.



For the time-dependent delay case, see e.g.

1.[C. Yue, L. Zhao, J. Comput. Appl. Math.,382(2021)113087.]
considers strong convergence of the split-step backward Euler
method for SDDE with nonlinear diffusion coefficient,

2.[Q. Zhu, Systems Control Lett., 118(2018)62-68.] considers the
stability of stochastic delay differential equations with Lévy noise
when the delay is bounded,

3. [M. MiloSevi¢, Math. Comput. Modelling 57(2013)] and [M.
Obradovi¢, M. Milogevi¢, J. Comput. Appl. Math., 309 (2017)
244-266.] investigate stability of exact solution and the
corresponding Euler-Maruyama method for NSDEs with bounded
delay, moreover, the drift term f must satisfy linear growth
condition.

However, to the best of our knowledge, few results consider the
exponential stability of the numerical methods for NSDEs with
unbounded delay.



In this talk, we will first define MTEM method for NSDEs with
time-dependent delay, and then we will investigate the strong
convergence of MTEM method and asymptotic exponential
stability of the exact solution and the corresponding MTEM
method.



2. Settings and truncated Euler-Maruyama method

Let (Q,#, F1>0, P) be a complete filtered probability space. Let
7 > 0 be a constant and denote by Cz, ([—7,0]; R") the family %
measurable, C([—7,0];RR")-valued random variables. We consider
equation (2) with the initial value

xo =& ={£(0),0 € [-7,0]} € Cs, ([-7, 0 R"),

where B(t) is a d-dimensional standard Brownian motion,
§(t) € CL(R4,Ry) such that §(0) = 7,

1
[1€1lp = (Esupge(—r.q [£(0)[P)» < o0, moreover,

f: R"xR"x [0,4+00) — R" and g: R" x R" x [0, +00) — R"®@RY
are Borel measurable functions, respectively.



Throughout this talk, let

§'()] <n <L

Local Lipschitz condition on f, g
For each R, there is Lr > 0

‘f(vau t) - f(j(’j/7 t)‘ \% ‘g(Xuya t) _g()??y@ t)‘
< Lr(Ix=X+[y—¥l)

forall t>0,|xVI[XV|yVIy <R

Global Lipschitz condition on D:
There exist 0 < u < 1 and U such that

1D(x, 1) = D(y: s)| < ulx— y| + Ult — s].



Let A € (0,1). And for the given 7 > 0, there exists a positive
integer m such that 7 = mA (if 7 = 0, we can choose any A > 0
small enough).

Choosing A* > 0 which is small enough, let h(A) be a strictly
positive decreasing function h: (0, A*] — (0, c0) such that for
some sufficiently small 0 < e < 1,

Jlim h(A) = oo. lim LyayAt e =0. (6)

Such h always exists for given Lg.



Then we will define modified truncated function fa for any A >0

ey ):{ fx,y.1), X V |y < h(A),

X 7
R 8L By ) vy > h(a). ()

ga is defined in the same way as fa.

Mao [X. Mao, J. Comput. Appl. Math. 290 (2015) 370-384] first
introduced truncated function fa(x) = f((% A 1)x) of a given
function and the truncated Euler-Maruyama method, and then
generalized it to the SDDEs case.



Modified truncated Euler-Maruyama method

Now, the modified truncated EM (MTEM) method X2 ~ x(kA)
can be defined by setting X2 = £(kA) for every integer
k=-m,--- Oand for k=1,2,---

Xi1 = D(Xicr1-tys (K +1)A) + Xk = D(Xiyy, kA)

(8)
+ fa (X, Xi—t s KA) A + g (X, Xi—i,, kKA) ABy

where [ = [%] and [x] is the integer part of x and
AB, = B((k+ 1)A) — B(kA).



The continuous-time MTEM solutions are as follows:

Xa(t) = Z XiLika (k1)0) (1), 9)
k=—m
sa(t)= > Xy e Lka (k1)) (1) (10)
k=—m

and xa(t) =&(t),t € [-7,0], for t >0,

xa(t) = D(xa(t), ) + £(0) — D(¢(—7),0)

t

v ' fa(Ra(s), %a(s), 5)ds + | eatia9)5a(9),918(6)

(11)
It is obvious that xa(kA) = Xa(kA) = Xk, for all k> 0.



Strong convergence of MTEM for (2)

3.1 Existence and uniqueness of the exact solution:
There exist positive contants K,/ and p > 2 such that

2 (x = D(y, 1), flx,y, 1)) + (p— 1)lglx v, )|* < K(1 + |xI? + [y1%).

(12)
Then we have
Theorem 1: Suppose (4), (5) and (12) hold. Then for any fixed
T>0,p > 2 and initial value ¢ satisfying ||¢||, < oo, (1) has a
unique global solution x(t) on [0, T] satisfying
supg<i< 7 E[x(t)|P < M. Denote 7g = inf{t > 0, |x(t)| > R}. Then
Prr< T)< %.
Corollary 1: Let (4), (5), (12) and |g(x, y, t)|?> < K(1 + X"+ |y
hold for p>2and 2 < r< p. Set p=p—r+2. If ||{]|, < o0,

then E( sup |x(t)|P) < C.
0<t<T



3.2 Some useful lemmas

Now let us consider the moment boundedness of sup xa(t), we
0<t<T
need a stronger condition:

There exists positive constant K such that Vx,y € R9 a € (0, 1],

1
2 (x= a0y )M 1))+ (o= Dl O < K1+ +11)
(13)
Lemma 1 Suppose that (4), (5), (13) and (6) hold. If
ey B < K(L+ [+ 131)

holds for p > 2 and 2 < r < p and the initial value satisfies
[|€]|p < oo, then there exist sufficiently small A* >0 and C >0
such that

sup E( sup |[xa(t)|P) < C,VT > 0.
0<A<A*  0<t<T

Define pa g = inf{t > 0, |xa(t)| > R}. Then P(pagr < T) < 5.



Lemma 2 Suppose that all assumptions of Lemma 1 hold. Then
for any A € (0, A*) and 0 < £ < 1, there exists C > 0 which is
independent of A (but dependent on n) such that

q(1—¢)
2

E sup |xa(t) —xa(t)|? < CLY, \\A
sup et~ 5a(0)" < CLi

(14)

The proof of the above two lemmas is similar to [L., Wang(2019)].



3.3 Convergence in the ball.

Now suppose that there exists K > 0 such that for any fixed A the
initial value satisfies

E sup sup  |é(s) — £(kA)T < RAS.  (15)
—m<k<—1kA<s< (k+1)A)

Lemma 3 Suppose that all assumptions of Lemma 2 and (15)
hold. Set

GA,R =TRNAPAR and eA(t) = X(t) — XA(t) for t > 0.

Then for any A € (0,A*), 0 < e <1 and R < h(A*), there exists
(g, T) > 0 (independent of A) such that
q(1—¢)

2

E( sup_lea(tA0aR)|%) < Clq. T)L25 A
o<t<T



Critical point:

Notice that since §' < n < 1, then for s € [kA, (kK + 1)A), we have

s —8(s) € [kA — 8(kA), (k + 1)A — 6((k + 1)A)).

Moreover,
s—d(s) € [(k RV [J(ZA)]A, (k+1)A — [W]A)
and
(k+ 14 - PEFDEIA (- 1ya - 2ED)A)
Cons ([J(kA) [5((k Zl)A)}) A
Cons ([J(km 7ﬁ(k+1)A)] N 1) A
cans ([F92] 1)
<3A
Thus Za(s — d(s)) = Zk_l_[%],Z NECSIC, Zyyy_potea)y. It follows that
E sup |Za(s — 6(s)) — 2a(8)|] <E sup |Zpy1 — Zi|?
0<s<t 0<k<([]
+E sup sup [§(s) — £(RA)[%.

—m<k<—1kA<s<(k+1)A



3.3 Strong convergence of MTEM method.

By a standard procedure of truncation, we have

Theorem 2 Suppose all assumptions in Lemma 3 hold. If

lg(x Y)I? < K(1 + [x]"+ [y]"), ¥x, ¥ € RY holds for some
r(2<r<(p—2),2<qg<(p—r)), then for any 0 < e < 1, there
exists C(q, T) (independent of A) such that

q(1—¢)

E sup_|x(t) = xa(8)|? < C(q, T)Lplp A (16)

0<t<T



Asymptotic exponential stability of solution of (2)

We always assume that

f0,0,t)=0, g(0,0,£)=0, D(0,t)=0

which implies that x = 0 is the trivial solution of equation (1).
We need a stronger Lipschitz condition on D.
There exists constants / > 0 and 0 < u < 1 such that

§(t)
[D(x,t) = D(y, t)| < u(L+ )" |x—y] (17)
and suppose there exist positive constants K, / such that

2 <X_ D(ya t)’ f(Xa Y, t)> + |g(X7 Y t)|2 < _)\1|X|2 + )‘2(1 + /)_5(t)‘y|2‘
(18)



Then we have

Theorem 3 Assume that (4), (17) and (18) hold with A; > 2.
Then for any initial condition £ € C[j@O([—T, 0]; R™), the exact
solution of equation of (2) is mean-square exponential stable. That
is, there exists A > 0 such that lim supw <=\

t—0o0



Asymptotic exponential stability of the MTEM method

We need the following lemma (see [M. MiloSevi¢, Math. Comput.
Modelling 57(2013)])

Lemma 4 Suppose (3) holds, for any fixed i € {1,2, ...}, denote
- [%] =ne{-m-m+1,.,0,1,.. i} then

A
#{(j€0,1,2,..1j— [5(1A )

=np<[1-n7+1  (19)

Here #A is the number of elements of the set A.



Exponential stability of X

Now we need a Khasminskii type condition:
There exist positive constants K, / such that

2 (x=aD(Z, 0), f1x,y, ) ) +lgx v, O < —Aalx22a(1+1) 20y
(20)

for any x,y € R? a € (0,1] and a stronger local Lipschitz condition

on f.

There exists [ > 0 such that for each R, thereis Lg >0

ey, 8) = %70 < L (=5 + (1+ ) Fly—7) (1)

forall t>0,|x VIx|VIyV]y <R

Now we have

Theorem 4 Suppose (17), (20) and (21) hold with

A1 > A2([(1—n)"Y +1). Then for h(A) satisfying h(A) — oo and
L%(A)A — 0 as A — 0, Xy is mean-square exponentially stable.



Theorem 4 contains both bounded and unbounded delay cases.
In the constant delay case, we have shown in [Lan, J. Comput.
Appl. Math., 340(2018) 334-341] that the MTEM method is
exponentially stable under the following condition:

There exist positive constants A; > A» such that

1
2 (= a0y t) i) ) + et X < ~Mab 4 el (22

for Vx,y € R9 a € (0,1].
Notice that we can choose sufficiently small € > 0 and /> 0 such
that A1 > Mo + ¢

A <Mo+e)1+NT <M +e) 1+ )00, (23)

So (20) holds, and then Theorem 4 covers the stability result of
the MTEM method for constant delay case.



Sketch of proof:

BV <EY - A - )EX 24+ A +€)(1+1)7 E|X |
whete ¥, = X~ D(X, s, hA).

C(Hl)AE\YkHP _ CkAIE|Yk|2

< ~A0 = &)CEIEXG + AQg + )OI+ ) SIBY,
1 (O _ CRE|y, 2

< —A(\ —)CEDAEX, 2 + AQ + E’)C(k‘[%]H)AHXk_[(;(%)]\Q
n (C(k+1)A _ CHEL

<(1 + c2) C*E|Yi|> + CF2 (1 + e Du? (1 + 1) PHFVE|X, ey |?
A

5(kA)
<(1+c2)D+ u2(1 + c;l) (1 = l) C(kf[(ﬂ%A)])A]EIXk_[[; ko ]|2.



Numerical example

Example 1 For any fixed € € (0, 1), consider the scalar NSDDE

d <x(t) - %sin(t) . sinx(% - 1)>
= (- (t)|x\2£(t)+sinx<§t 1)) o (24)

1
XM + x (5 -
4

+ sin(t) Y dB;

with initial value £(6) = 1,60 € [-1,0]. Here

flx,y. 1) = x - x|X\* +siny, g(x,y, t) = sin(1)
D(y,t) = Ssin(t)siny and 6(t) = 1+ 3.

1+e
ik 2% 4+y and



Obviously, fand g satisfy local Lipschitz condition (4) with

Lr = (1+2¢)(1 + R¥), (5) holds with u= U= 1 and (13) holds
with p =6 and K = %. Moreover,

lg(x, )2 < 31+ [x2T2 + [y*T%), ie. r=2(1+4¢). For&’ >0
small enough, define

1
e 2e
AT s
h(A):<l+2€—1> . A< (14+2e)7.

Then h(A) — 0o as A — 0 and for if 1 —e — &’ > 0, we have

Lhp)AT = A5 » 0 as A — 0. That is, (6) holds for this h.



Choose g = 3 and lia < ¢’ < 1—e. Then for sufficiently small A,
4

h(A) ~ A™& > A" . Therefore, we can choose C' > 0 such that

C(L203, A0-9) 75 = (L o)A ) 2

h(A)

_ OATET < OATT < h(n),

Then by Theorem 2, we have

(1—e—c')
E sup [x(1) —xa()PVE sup |x(t) —xa(H)® < CA™
0<t<T 0<t<T



Example 2 Let d = 1. Consider the following scalar NSDDE:
d x(t)—le_ﬁtsinx<£> = —6X(t)—x3(t)+le_itsinx<—t) dt
6 2 2 2

+ <X22(t) + ;e—ixG)) dB.
(25)

In this case, f(x y,t) = —6x—x+3 les siny, g(xy,t) = %

D(y,t) = 6e 2siny and the delay term 6(t) = 5.



We can derive that
‘D(Xu t) - D(y7 )’

and for any a € (0, 1]

EET . 1 _:
2]smx—5|ny\§6e 2|x—y]

@\H

25— aD(y, ) 5, ) + gy, O

: s
= —12x% — 2x* + xsin ye 2 + 2axsin Y3 + Ta sin
a
X2 _t
— gsin ysin geft + (#)2
< —124% —2x* + \xy|e_% + |2ax- X|e_5
a
1 at ‘ ‘
+ x4 + 133 (sin4 X)e*t—i- E|y- X\efi + x4 672y
a
x2+y2e*t 1
< —12¥° 1
< +3 +(12+6+ )yPe 2
21 ¢
S —?X2+3y2€72.

Xe_
a

N+



Moreover, mean value theorem implies that

|f(X7.y7 t) - f(j(7y7 t)‘ v \g(x,y, t) - g()?,y@ t)|
< 6(1+ R)(Ix— X + e [y~ ¥)

for x|V IXV]y|]V|Y] <R R>0and t>0.
Thus conditions in Theorem 5 hold for

=% l=e-1n=3x=%>9=3x3=2x([(1-n)"Y+1)
and Lgr = 6(1 + R?). So the MTEM method Xj is mean-square
exponentially stable (therefore almost sure exponentially stable).
Moreover, since (17), (20) and (21) imply (4), (5) and (18), by
Theorem 3, the exact solution x(t) of equation (1) is exponentially
stable. Now let h(A) = A=Y/ A < 1. Then 1 < h(A) — o as
A — 0, moreover, we have

LhnyA =36(1+ h*(A))°A =36(1+ A /*PA - 0as A — 0.

Therefore, the corresponding MTEM method X replicates the
mean-square exponential stability of given NSDDE.



Let x(0) =2, A = 0.1, then computer simulation (Matlab) for the
first 500 steps of X indicates the almost surely exponential
stability, the following Figure illustrates that the numerical
approximation Xj is stable and Iog‘xd is less than —1 for k large
enough and therefore Xj is exponentlally stable.

L3
&
5 &
Tog(4eke)
5 -

0 50 100 150 200 250 300 350 400 450 500 . 50 100 150 200 250 300 350 400 450 600
Steps Steps

: . ; log | X|
Figure: trajectory of Xy and =5



Thanks!




